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Abstract. A field-theoretic description of static and purely relaxational dynamic critical
behaviour of systems with quenched defects obeying power law correlations∼|x|−a for large
separationsx is given. Directly, for three-dimensional systems and for different values of the
correlation parameter, 26 a 6 3, a renormalization analysis of the scaling functions in the two-
loop approximation is carried out, and the fixed points corresponding to the stability of various types
of critical behaviour are identified. The obtained results essentially differ from results evaluated by
a doubleε, δ-expansion. The static and dynamic critical exponents in the two-loop approximation
are calculated with the use of the Padé–Borel summation technique.

1. Introduction

In recent years, much effort has been devoted to investigating the critical behaviour of solids
containing quenched defects. In most papers considerations have been restricted to the case
of point defects with small concentrations so that the defects and corresponding random fields
have been assumed to be Gaussian distributed andδ-correlated.

For the first time, in the work of Weinrib and Halperin (WH) [1], we have been offered a
model of the critical behaviour of a disordered system in which the correlation function of the
random local transition temperatureg(x − y) = 〈〈Tc(x)Tc(y)〉〉 − 〈〈Tc(x)〉〉2 falls off with
distance as a power law∼|x−y|−a. They showed that fora > d long-range (LR) correlations
are irrelevant and the usual short-range (SR) Harris criterion [2] 2−dν0 = α0 > 0 of influence
of δ-correlated point defects is realized, whered is the spatial dimension, andν0 andα0 are
the correlation-length and the specific-heat exponents of the pure system. Fora < d the
extended criterion 2− aν0 > 0 of the influence of disorder on the critical behaviour was
established. As a result, a wider class of disordered systems, not only the three-dimensional
(3D) Ising model withδ-correlated point defects, can be characterized by a new type of critical
behaviour. So, fora < d a new LR disorder stable fixed point (FP) of the renormalization
group recursion relations for systems with a number of components of the order parameter
m > 2 was discovered. The critical exponents were calculated in the one-loop approximation
using a double expansion inε = 4− d � 1 andδ = 4− a � 1. In the casem = 1 the
accidental degeneracy of the recursion relations in the one-loop approximation did not permit
them to find LR disorder stable FP, but a change in critical behaviour of the model from the SR
to the LR-correlation type was predicted forδ > δc = 2(6ε/53)1/2. Korzhenevskiiet al [3]
proved the existence of the LR disorder stable FP for the one-component WH model and also
found characteristics of this type of critical behaviour. Also, they considered a very interesting
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Figure 1. Regions of the various types of critical behaviour which have been determined: (a) in [1]
on the basis of the doubleε, δ-expansion; (b) in this paper with use of the field-theoretic description
in a two-loop approximation for the 3D WH model; (c) in this paper taking into consideration the
higher orders of approximation.

model of the critical behaviour of crystals with LR correlations caused by point defects with
degenerate internal degrees of freedom [3,4].

The models with LR-correlated quenched defects have both theoretical interest due to the
possibility of predicting new types of critical behaviour in disordered systems and experimental
interest due to the possibility of realizing RL-correlated defects in disordered solids containing
fractal-like defects [3]. However, numerous investigations of pure and disordered systems
performed with the use of the field-theoretic approach show that the predictions made in the
one-loop approximation, especially on the basis of theε-expansion, can differ strongly from
the real critical behaviour [5–8]. Therefore, the map of regions with the various types of
critical behaviour derived for the WH model on the basis ofε, δ-expansion [1] (figure 1(a))
may not correspond to the critical behaviour of the 3D WH model for different values ofm and
a. In this case the results for the models with LR-correlated defects derived with the use of
ε, δ-expansion [1,3,4,9–11] must be corrected. To shed light on this question and to determine
more accurately the dependence of the critical behaviour on the number of components of the
order parameterm and the values of correlation parametera, we have constructed a field-
theoretical description of the 3D WH model in the two-loop approximation for the values of
a in the range 26 a 6 3. For dynamics, we concentrate on a purely relaxational model with
no conserved quantities (model A in the classification of Hohenberg and Halperin [12]).

In section 2 we describe a Lagrangian theory of critical dynamics of the WH model with
LR-correlated defects and use the replica method to construct the generating functional for
dynamic correlation and response functions. Renormalization of the model is discussed in
section 3. Scalingβ functions and the FPs corresponding to the stability of various types of
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critical behaviour are determined in section 4. The calculation of the critical exponents with
the use of the Padé–Borel summation method and discussion of the main results are given in
section 5.

2. The model and generating functional

We consider an O(m)-symmetric Ginzburg–Landau–Wilson model of a disordered system
defined by the effective Hamiltonian

H(φ, V ) =
∫

ddx

[
1

2

m∑
β=1

[r0(φ
β)2 + |∇φβ |2 + V (x)(φβ)2] +

u0

4!

( m∑
β=1

(φβ)2
)2
]

(2.1)

whereφ(x, t) is them-component order parameter andV (x) is the potential of defects. As
usual,r0 is taken to be linear in temperature andu0 to be a positive constant. The concentration
of defects is taken to be well below the percolation limit. The average ofV over the quenched
random distribution is taken to be zero (otherwise its constant average value could be absorbed
into r0) and according to the WH model the second moment of the distribution has the form
〈〈V (x)V (y)〉〉 = 8g(x − y) ∼ |x − y|−a.

The dynamical behaviour of the system in the relaxation regime near the critical
temperature can be described by the Langevin equation for the order parameter [12]

∂φβ(x, t)

∂t
= −λ0

δH
δφβ(x, t)

+ ηβ(x, t) (2.2)

whereλ0 is the Onsager kinetic coefficient. The Gaussian random-noise sourceη(x, t) has the
probability functional

Pη(η) = Aη exp

[
− (4λ0)

−1
∫

ddx dt ηβ(x, t)ηβ(x, t)

]
(2.3)

where a summation overβ = 1, . . . , m is understood. This functional may conveniently be
rewritten using auxiliary response fieldsφ̃β(x, t) [13]. For later convenience, we introduce
the sourceJ̃ β(x, t)

Pη(η, J̃ ) = Aη
∫
Dφ̃ exp

[
−
∫

ddx dt φ̃β(λ−1
0 φ̃β + iλ−1

0 ηβ − J̃ β)
]
. (2.4)

In accordance with [14,15], dynamic correlation and response functions may be obtained from
the generating functional

G(J, J̃ ) = − lnW(J, J̃ ) (2.5)

where

W(J, J̃ ) =
∫
DηPη(η, J̃ ) exp

(∫
ddx dt J βφβ

)
=
∫
DφDφ̃ det

∣∣∣∣ ∂η∂φ
∣∣∣∣ exp

(∫
ddx dt (J βφβ + J̃ β φ̃β)− L

)
. (2.6)

Here,η is to be expressed in terms ofφ by substitution from (2.2),which yields the Lagrangian

L =
∫

ddx dt

[
φ̃βλ−1

0 φ̃β + iφ̃β
(
λ−1

0

∂ϕβ

∂t
+
δH
δφβ

)]
. (2.7)

The effect of the Jacobian in (2.6) may be implemented perturbatively by simply omitting
single response propagator loops [16] and we drop it hereafter.
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Green functions generated byG(J, J̃ ) are to be further averaged over the random potential
V (x). This averaging is most efficiently carried out by means of the replica method (although
direct term-by-term averaging generates precisely the same perturbation series). In the usual
way, the formal identity

lnW = lim
n→0

〈〈
Wn − 1

n

〉〉
(where double angle brackets denote the defect average over the probability distributionP(V ))
leads us to study the generating functional

W(n) =
∫ n∏

i=1

DφiDφ̃i
〈〈

exp

[
−

n∑
j=1

(
L(φj φ̃j )−

∫
ddx dt (J βj φ

β

j + J̃ βj φ̃
β

j )

)]〉〉

=
∫ n∏

i=1

DφiDφ̃i exp

(
− L(n) +

n∑
j=1

∫
ddx dt (J βj φ

β

j + J̃ βj φ̃
β

j )

)
. (2.8)

To obtain the replicated LagrangianL(n), we need to compute the average〈〈
exp

(
− i

∫
ddx dt V (x)φ̃βi φ

β

i

)〉〉
=
∫
DVP (V ) exp

(
− i

∫
ddx dtV (x) φ̃βi φ

β

i

)
∼ exp

(
− 4

∫
ddx ddy dt dt ′g(x − y) φ̃βi (x, t)φβi (x, t)φ̃γj (y, t ′)φγj (y, t ′)

)
. (2.9)

Substituting in (2.8), we obtain

L(n) =
∑
i

∫
ddx dt

[
λ−1

0 φ̃
β

i φ̃
β

i + iφ̃βi

(
λ−1

0

∂φ
β

i

∂t
−∇2φ

β

i + r0φ
β

i

)
+

i

3!
u0φ̃

β

i φ
β

i φ
γ

i φ
γ

i

]
+4
∑
ij

∫
ddx ddy dt dt ′g(x − y)φ̃βi (x, t)φβi (x, t)φ̃γj (y, t ′)φγj (y, t ′). (2.10)

The properties of the original disordered system are obtained in the replica number limit
n→ 0. The average generating functional is now given by

G̃(J, J̃ ) = 〈〈G(J, J̃ )〉〉 = − lim
n→0

lnW(n)(J, J̃ )

n
(2.11)

where, on the right-hand side, the sourcesJ
β

i andJ̃ βi are taken to be the same for each replicai.

From this average generating functional the connected Green functionsG(N,Ñ) can be defined
by the next expressions:

G
(N,Ñ)
{β}N {β ′}Ñ ({x, t}N, {x

′, t ′}Ñ ) =
〈 N∏
j=1

φ
βj
j (xj , tj )

Ñ∏
k=1

φ̃
β ′k
k (x

′
k, t
′
k)

〉

=
N∏
j=1

δ

δJ βj (xj , tj )

Ñ∏
k=1

δ

δJ̃ βk (x ′k, t
′
k)
G̃(J, J̃ )|J=J̃=0. (2.12)

It will be convenient to introduce the one-particle irreducible vertex functions0(N,Ñ). Their
generating functional is obtained from̃G(J, J̃ ) through a Legendre transformation,

0(φ, φ̃) = G̃(J, J̃ ) +
∫

ddx dt (J βφβ + J̃ β φ̃β) (2.13)

where

φβ = − δG̃
δJ β

φ̃β = − δG̃
δJ̃ β

. (2.14)
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Figure 2. Graphical illustration of the Legendre transform leading to equations (2.17) and (2.18).

Then

J β = δ0

δφβ
J̃ β = δ0

δφ̃β
(2.15)

and

0
(N,Ñ)
{β}N {β ′}Ñ ({x, t}N, {x

′, t ′}Ñ ) =
N∏
j=1

δ

δφβj (xj , tj )

Ñ∏
k=1

δ

δφ̃βk (x ′k, t
′
k)
0(φ, φ̃)|φ=φ̃=0. (2.16)

The physical significance of the field̃φ is easily seen if we add a time-dependent external
field J̃ β(x, t) to the right-hand side of the Langevin equation (2.2). This leads directly to the
term J̃ β φ̃β in equations (2.6) and (2.8). Consequently, the cumulantsG(N,Ñ) with Ñ > 1 are
response functions.

The static correlation functions are obtained (see, e.g. de Dominicis and Peliti [16] and
references therein) as the zero-frequency limits of dynamic response functions

G
(N)

static(q
i) = G(1,N−1)(qi, ωi = 0) (2.17)

in the absence of streaming terms from the equation of motion (2.2). Using (2.15) and (2.16)
we find that the static vertex functions are given by

0
(N)

static(q
i) = 0(N−1,1)(qi, ωi = 0). (2.18)

These relations are illustrated for the two- and four-point functions in figure 2.
Also, as generalization of the our dynamical scheme the generating functional for

cumulants with insertions of the composite fieldφ2(x, t), which have an independent existence
when fluctuations become important, may be introduced:

W(n) =
∫ n∏

i=1

DφiDφ̃i exp

(
− L(n) +

n∑
j=1

∫
ddxdt (J βj φ

β

j + J̃ β φ̃β + 1
2Ijφ

2
j )

)
(2.19)

and then the average generating functional is given by

G̃(J, J̃ , I ) = 〈〈G(J, J̃ , I 〉〉 = − lim
n→0

lnW(n)(J, J̃ , I )

n
. (2.20)

The generating functional for vertex functions with insertions is defined through the partial
Legendre transformation

0(φ, φ̃; I ) = G̃(J, J̃ , I ) +
∫

ddx dt (J βφβ + J̃ β φ̃β) (2.21)

which yields

0(L,N,Ñ)({x, t}N, {x ′, t ′}Ñ , {y, τ }L)

=
L∏
j=1

δ

δI (yj , τj )
0(N,Ñ)({x, t}N, {x ′, t ′}Ñ ; I )|I=0. (2.22)
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Figure 3. Diagrammatic rules for the perturbation series generating by the Lagrangian (2.10).
Momentum and frequency are conserved at each vertex, while the impurity vertices carry the
additional constraint shown.

In this case the static vertex functions are given by

0
(L,N)

static (q
i) = 0(L,N−1,1)(qi, ωi = 0). (2.23)

The Fourier transformation of the interaction vertexg(x) ∼ x−a in the replicated
Lagrangian (2.10) givesg(k) = v0 + w0k

a−d for small k. g(k) must be positive definite,
therefore ifa > d, then thew term is irrelevant,v0 > 0 andL(n) (2.10) corresponds to the
model with SR-correlated defects [17,18], while ifa < d, then thew term is dominant at small
k andw0 > 0. After Fourier transformation of the replicated Lagrangian (2.10) on space and
time, we arrive at the diagrammatic rules shown in figure 3.

3. Renormalization and renormalization group equation

As is known, in the field-theoretic approach [19] the asymptotic critical behaviour of systems in
the fluctuation region are determined by the Callan–Symanzik renormalization group equation
for the vertex parts of the irreducible Green functions. To calculate theβ functions and the
critical exponents as functions of the renormalized interaction verticesu, v andw (scalingγ
functions) appearing in the renormalization group equation, we used the method based on the
Feynman diagram technique and the renormalization procedure [14,15,20].

The Feynman diagrams that contribute to the correlation and response functions involve
momentum integrations of dimensiond (in our cased = 3). Near the critical point the
correlation lengthξ increases infinitely. Whenξ−1� 3, where3 is a cutoff in momentum–
space integrals (the cutoff3 serves to specify the basic length scale), the vertex functions are
expected to display an asymptotic scaling behaviour for wavenumbersq � 3. Therefore,
one is led to consider the vertex functions in the limit3→ ∞. Since the ‘bare’ parameters
m2

0 = r0 − r0c (r0c denotes the critical value ofr0), λ0, u0, v0, w0 and ‘bare’ fieldsφ0, φ̃0

carry a3-dimension, one has to renormalize the theory in order to absorb the divergences of
diagrams in a change of parameters and to obtain meaningful expression for the correlation
and response functions for3→∞.

The required reparametrization employs the next renormalization algorithm developed for
Lagrangian field theory. We first define renormalized fieldsφ = Z−1/2φ0 andφ̃ = Z−1/2φ̃0,
where now the zero subscripts denote the unrenormalized quantities appearing in section 2.
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The relations (2.17) require that bothφ andφ̃ are renormalized by the same factorZ−1/2. The
renormalized composite field can be defined byφ2 = (Zφ2/Z)φ2

0. The renormalized vertex
functions are given by

0(L,N,Ñ)(qi, ωi,m2, u, v,w, λ) = Z(N+Ñ)/2−LZLφ20
(L,N,Ñ)
0 (qi, ωi,m2

0, u0, v0, w0, λ0)

(3.1)

with renormalized parameters defined by

m2
0 = m2Z−1m̃2

0(u, v,w,m/3)

u0 = m4−dZ−2ũ0(u, v,w,m/3)

v0 = m4−dZ−2ṽ0(u, v,w,m/3)

w0 = m4−aZ−2w̃0(u, v,w,m/3)

λ−1
0 = Zλλ−1

(3.2)

wherem̃2
0, ũ0, ṽ0, w̃0, and allZ-factors are dimensionless functions of renormalized parameters

m/3, u, v, andw. To determine these dimensionless functions, we require at each order of
vertex functions expansion that the renormalized two- and four-point vertex functions contain
no divergences for3→∞. On dimensional grounds, we then expect that higher-order vertices
are also free of divergences. TheZ-factors and dimensionless functionsm̃2

0, ũ0, ṽ0, andw̃0

are all obtained from normalization conditions for the response function0(0,1,1), four-point
functions0(0,3,1) and0(0,2,2) and two-point function0(1,1,1) with φ2 insertion:

0(0,1,1)(q,−q, ω;m2, u, v,w, λ)|q2,ω=0 = m2

∂

∂q2
0(0,1,1)(q,−q, ω;m2, u, v,w, λ)|q2,ω=0 = 1

∂

∂(−iω)0
(0,1,1)(q,−q, ω;m2, u, v,w, λ)|q2,ω=0 = λ−1

0(0,3,1)(qi, ωi;m2, u, v,w, λ)|qi ,ωi=0 = m4−du
0(0,2,2)v (qi, ωi;m2, u, v,w, λ)|qi ,ωi=0 = m4−dv
0(0,2,2)w (qi, ωi;m2, u, v,w, λ)|qi ,ωi=0 = m4−aw
0(1,1,1)(q;p,−p;ωi;m2, u, v,w, λ)|q,p,ωi=0 = 1.

(3.3)

When we considered a diagrammatic representation of two-point vertex function0(0,1,1)

(figure 4), three types of four-point vertex functions0(0,3,1), 0(0,2,2)v , and0(0,2,2)w and two-
point with theφ2 insertion vertex function0(1,1,1) in the two-loop approximation the diagrams
were integrated numerically ind = 3 and with values of parametera determining momentum
dependence of thew interaction in the range 26 a 6 3 with changes through the step
1a = 0.01. Unlike the works usingε, δ-expansion we took into consideration the graphs of
the form of figure 5, contributions of which are increased when the valuesa are removed from
a = 3.

As is known, the scaling behaviour of vertex functions follows from the Callan–Symanzik
renormalization group equations, which can be derived in our case by taking a derivative of
equation (3.1) with respect to lnm, at fixedu0, v0, w0, λ0, and3, and have the form[
m
∂

∂m
+ βu

∂

∂u
+ βv

∂

∂v
+ βw

∂

∂w
+ γλλ

∂

∂λ
− L(γφ2 − γφ)

− N + Ñ

2
γφ

]
0(L,N,Ñ)(qi, pj , ωi, ωj ;m2, u, v,w, λ) = m2(2− γφ)0(L+1,N,Ñ). (3.4)

The right-hand side is asymptotically smaller, asm/3 → 0, (it may be asymptotically
neglected at least order by order in perturbation theory) and is assumed not to affect the
critical behaviour.
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Figure 4. One- and two-loop graphs contributing to the two-point vertex function0(0,1,1)(q, ω).

Figure 5. Graphs that, in addition, take into consideration the comparison with other works, using
ε, δ-expansion: corresponds to verticesu, v andw; corresponds to insertion of the composite
field φ2(x, t); ——O—— corresponds to dynamic response or correlation functions.

Standard arguments forβ andγ functions give the following expressions:

βu(u, v,w) =
(
m
∂u

∂m

)∣∣∣∣
u0,v0,w0,λ0

βv(u, v,w) =
(
m
∂v

∂m

)∣∣∣∣
u0,v0,w0,λ0

βw(u, v,w) =
(
m
∂w

∂m

)∣∣∣∣
u0,v0,w0,λ0

γφ(u, v,w) =
(
m
∂ lnZ

∂m

)∣∣∣∣
u0,v0,w0,λ0

γφ2(u, v,w) =
(
m
∂ lnZφ2

∂m

)∣∣∣∣
u0,v0,w0,λ0

γλ(u, v,w) =
(
m
∂ lnZλ
∂m

)∣∣∣∣
u0,v0,w0,λ0

.

(3.5)

We computed the Feynman graphs contributing to equations (3.3) and determinedZ-factors
and functionsu0(u, v,w), v0(u, v,w),w0(u, v,w). As a result, we obtained theβ andγ
functions in the two-loop approximation in the form of the expansion series in renormalized
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Table 1. Coefficients for theβ functions in equations (3.6).

a b1 b2 b3 b4 b5 b6

3.01 1.862 631 9.763 843 0.867 400 1.723 696 0.337 829 1.004 987
3.00 1.851 852 9.703 704 0.856 481 1.712 963 0.333 333 1.000 000
2.90 1.751 381 9.149 428 0.761 858 1.614 234 0.297 079 0.961 992
2.80 1.662 830 8.671 819 0.686 998 1.529 491 0.273 802 0.944 294
2.70 1.584 520 8.260 292 0.627 099 1.456 807 0.260 815 0.946 290
2.60 1.515 077 7.906 550 0.578 448 1.394 685 0.256 737 0.968 890
2.50 1.453 357 7.604 029 0.537 918 1.341 947 0.261 215 1.014 801
2.40 1.398 383 7.347 527 0.502 515 1.297 671 0.274 936 1.089 146
2.30 1.349 314 7.132 943 0.468 822 1.261 144 0.299 612 1.200 719
2.20 1.305 402 6.957 111 0.432 135 1.231 831 0.338 622 1.364 436
2.10 1.265 968 6.817 670 0.384 813 1.209 353 0.397 917 1.606 356
2.00 1.230 378 6.713 001 0.312 654 1.193 479 0.488 229 1.974 883

verticesu, v andw. We list here the resulting expansions:

βu(u, v,w) = −u + u2 − 3

2
uv − (3f1− f2)uw − 4(41m + 190)

27(m + 8)2
u3− 185

216
uv2

+
2(25m + 131)

27(m + 8)
u2v +

1

m + 8
(b1m + b2)u

2w − b3uw
2 − b4uvw

βv(u, v,w) = −v − v2 − f3w
2 − (3f1− f2)vw +

2(m + 2)

(m + 8)
uv − 95

216
v3− b5w

3

+
50(m + 2)

27(m + 8)
uv2 + b6

(m + 2)

(m + 8)
uw2 − b7vw

2 − 92(m + 2)

27(m + 8)2
u2v

−b8v
2w + b9

(m + 2)

(m + 8)
uvw

βw(u, v,w) = −(4− a)w − (f1− f2)w
2 − 1

2
vw +

2(m + 2)

(m + 8)
uw + b10w

3− b11vw
2

− 23

216
v2w − 92(m + 2)

27(m + 8)2
u2w + b12

(m + 2)

(m + 8)
uw2 +

23(m + 2)

27(m + 8)
uvw

γφ(u, v,w) = 1

2
f2w +

8(m + 2)

27(m + 8)2
u2 +

1

108
v2 + c1w

2 − 2(m + 2)

27(m + 8)
uv

−c2
(m + 2)

(m + 8)
uw +

1

4
c2vw

γφ2(u, v,w) = −m + 2

m + 8
u +

1

4
v +

1

2
f1w +

2(m + 2)

(m + 8)2
u2 +

1

16
v2 + c3w

2 +
1

4
c4vw

− (m + 2)

2(m + 8)
uv − c4

(m + 2)

(m + 8)
uw

γλ(u, v,w) = 1

4
v +

1

2
(f1− f2)w + 0.226777

(m + 2)

(m + 8)2
u2 +

23

432
v2 + c5w

2

+c6vw + c7
(m + 2)

(m + 8)
uw − 5(m + 2)

54(m + 8)
uv

f1 = (a − 2)(a − 4)

2 sin(πa/2)
f2 = (a − 2)(a − 3)(a − 4)

48π sin(π(a/2− 1))
f3 = (2a − 5)(2a − 7)

2 sin(π(a − 3/2))

(3.6)

where the coefficientsbi andci for different values of parametera in the range 26 a 6 3 are
given in tables 1–3.

The series (3.6) are normalized by a standard change of variables [6,7]u→ 6u/(m+8)J ,
v → v/32J , w → w/32J , so that the coefficients of the termsu, u2 andv, v2 in βu andβv
become 1 in modulus, whereJ = ∫ ddq/(q2 + 1)2 is the one-loop integral.
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Table 2. Coefficients for theβ functions in equations (3.6) (a continuation of table 1).

a b7 b8 b9 b10 b11 b12

3.01 1.118 646 1.220 480 2.869 061 −0.109 703 0.216 033 0.864 131
3.00 1.106 481 1.212 963 2.851 852 −0.106 481 0.212 963 0.851 852
2.90 1.002 356 1.143 678 2.692 492 −0.078 756 0.183 943 0.735 771
2.80 0.923 071 1.083 977 2.553 857 −0.055 369 0.157 468 0.629 873
2.70 0.863 671 1.032 536 2.433 062 −0.034 759 0.132 927 0.531 707
2.60 0.820 670 0.988 319 2.327 810 −0.015 651 0.109 805 0.439 222
2.50 0.791 618 0.950 504 2.236 243 0.003 123 0.087 655 0.350 621
2.40 0.774 801 0.918 441 2.156 843 0.022 783 0.066 066 0.264 264
2.30 0.769 001 0.891 618 2.088 367 0.044 810 0.044 645 0.178 581
2.20 0.773 244 0.869 639 2.029 786 0.071 264 0.023 001 0.092 005
2.10 0.786 402 0.852 209 1.980 257 0.105 370 0.000 725 0.002 899
2.00 0.806 375 0.839 125 1.939 086 0.152 800 −0.022 629 −0.090 516

Table 3. Coefficients for theγ functions in equations (3.6).

a c1 c2 c3 c4 c5 c6 c7

3.00 0.009 259 0.074 074 0.062 500 0.500 000 0.053 241 0.106 481−0.092 593
2.90 0.013 240 0.091 345 0.052 617 0.459 230 0.039 378 0.091 971−0.074 149
2.80 0.016 866 0.109 306 0.044 550 0.424 242 0.027 685 0.078 734−0.055 764
2.70 0.020 366 0.128 207 0.037 746 0.394 061 0.017 380 0.066 463−0.037 191
2.60 0.023 928 0.148 326 0.031 754 0.367 937 0.007 825 0.054 903−0.018 174
2.50 0.027 720 0.169 970 0.026 158 0.345 280−0.001 561 0.043 828 0.001 568
2.40 0.031 909 0.193 493 0.020 517 0.325 625−0.011 391 0.033 033 0.022 341
2.30 0.036 679 0.219 306 0.014 273 0.308 596−0.022 405 0.022 323 0.044 494
2.20 0.042 244 0.247 892 0.006 612 0.293 895−0.035 632 0.011 501 0.068 425
2.10 0.048 869 0.279 832−0.003 816 0.281 281−0.052 685 0.000 362 0.094 608
2.00 0.056 893 0.315 823−0.019 507 0.270 565−0.076 400−0.011 315 0.123 604

4. FPs and various types of critical behaviour

The nature of the critical behaviour is determined by the existence of a stable FP satisfying the
system of equations

βi(u
∗, v∗, w∗) = 0 (i = 1, 2, 3). (4.1)

It is well known that perturbation series are asymptotic series, and that the vertices describing
the interaction of the order parameter fluctuations in the fluctuating regionm → 0 are large
enough so that expressions (3.6) cannot be used directly. For this reason, to extract the
required physical information from the obtained expressions, we employed the Padé–Borel
approximation of the summation of asymptotic series extended to the multiparameter case [8].
The direct and inverse Borel transformations for the multiparameter case have the form

f (u, v,w) =
∑
i,j,k

cijku
ivjwk =

∫ ∞
0

e−tF (ut, vt, wt)dt

F (u, v,w) =
∑
i,j,k

cijk

(i + j + k)!
uivjwk.

(4.2)
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A series in the auxiliary variableθ is introduced for analytical continuation of the Borel
transform of the function:

F̃ (u1, u2, u3, θ) =
∞∑
k=0

θk
k∑
i=0

k−i∑
j=0

ci,j,k−i−j
k!

ui1u
j

2u
k−i−j
3 (4.3)

to which the [L/M] Pad́e approximation is applied at the pointθ = 1. To perform the
analytical continuation, the Padé approximant of [L/1] type may be used which is known
to provide rather good results for various Landau–Wilson models (see, e.g., [21, 22]). The
property of preserving the symmetry of a system during application of the Padé approximation
by theθ method, as in [21], has become important for multivertices models. We used the [2/1]
approximant to calculate theβ functions in the two-loop approximation.

However, the analysis of the series coefficients for theβw function has shown that the
summation of this series is fairly poor, which resulted in the absence of FP withw∗ 6= 0, for
example, in the casem = 1 for a < 2.93, in the casem = 2 for a < 2.67 etc. Dorogovtsev
found the symmetry of the scaling function for the WH model in relation to the transformation
(u, v,w) → (u, v, v + w) [9] which gives the possibility of investigating the problem of FP
existence withw∗ 6= 0 in the variables(u, v, v+w). In this case our investigations have shown
the existence of FPs withw∗ 6= 0 in the whole region where the parametera changes.

We have found three types of FPs in the physical region of parameter spaceu∗, v∗, v∗ +
w∗ > 0 for different values ofm anda. Type I corresponds to the FP of a pure system
(u∗ 6= 0, v∗, w∗ = 0), type II is a SR-disorder FP(u∗, v∗ 6= 0, w∗ = 0) and type III
corresponds to LR-disorder FPs(u∗, v∗, w∗ 6= 0). The type of critical behaviour of this
disordered system for each value ofm anda is determined by the stability of the corresponding
FP. The requirement that the FP be stable reduces to the condition that the eigenvalues of the
matrix

Bi,j = ∂βi(u
∗
1, u
∗
2, u
∗
3)

∂uj
(4.4)

lie in the right-hand side complex half-plane.
Values of the stable FPs obtained for the most interesting values of the number of order-

parameter componentsm and 26 a 6 3 are presented in table 4. As one can see from this
table, for the Ising model(m = 1) the LR-disorder FP is stable for values ofa in the whole
investigated range. The additional calculations for 3< a < 4 have shown that only FP II is
stable in this range. Fora = 3 FP values for verticesu andg(k) are equal,u∗ = 2.383 38
andg∗ = v∗ +w∗ = 0.551 64, and correspond to the SR-disordered Ising model FP, although
w∗ 6= 0. Similarly, form = 1 anda = 3 the LR disorder is marginal, and the critical
behaviour of the WH model, as that of the SR-disordered Ising model, is characterized by
the same critical exponents (table 5). The critical behaviour of theXY -model (m = 2) is
determined by the LR-disorder FP fora 6 2.96 and the SR-disorder FP fora > 2.96. The
Heisenberg model(m = 3) is characterized by a change in the types of critical behaviour from
the LR-disorder type (III) fora 6 2.85 to the pure type (I) fora > 2.85. Figure 1(b) shows
regions of the various types of critical behaviour of the WH model, which we obtained in the
two-loop approximation. The large change in the picture indicates that the correspondence
between the WH results and our calculations in the two-loop approximation is weak.

However, the results, which we received for the disorderedXY -model, must be corrected.
We believe that in the higher field-theory orders of approximationk the critical behaviour of the
XY -model will be determined by the FP of pure type (I) fora(k)c < a, but not by the SR-disorder
FP (II), obtained in the two-loop order. Here,a(k)c is a marginal value fora in thekth order of
approximation, for which disorder is irrelevant (a(6)c ' 2/ν0 = 2.99 withν0 = 0.669 [22] for
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Table 4. Stable FPs of the 3D WH model from two-loop expansions.

m = 1 m = 2 m = 3

a u∗ v∗ w∗ + v∗ u∗ v∗ w∗ + v∗ u∗ v∗ w∗ + v∗

3.01 2.383 38 0.551 64 0.551 64 1.564 69 0.004 16 0.004 16 1.520 97 0.000 00 0.000 00
3.00 2.383 38 0.222 93 0.551 64 1.564 69 0.004 16 0.004 16 1.520 97 0.000 00 0.000 00
2.97 2.452 78 0.253 53 0.594 56 1.564 69 0.004 16 0.004 16 1.520 97 0.000 00 0.000 00
2.96 2.474 80 0.263 34 0.607 97 2.039 51 0.101 60 0.373 76 1.520 97 0.000 00 0.000 00
2.90 2.598 04 0.318 90 0.681 14 2.090 01 0.113 86 0.400 38 1.520 97 0.000 00 0.000 00
2.86 2.673 52 0.353 26 0.724 40 2.123 79 0.121 99 0.417 41 1.520 97 0.000 00 0.000 00
2.85 2.691 72 0.361 56 0.734 65 2.132 54 0.124 18 0.421 83 1.929 96 0.078 24 0.333 72
2.80 2.779 27 0.401 53 0.782 99 2.176 77 0.135 36 0.443 59 1.957 70 0.082 98 0.345 50
2.70 2.940 31 0.474 87 0.867 57 2.267 78 0.159 23 0.486 12 2.017 46 0.093 46 0.370 04
2.60 3.086 45 0.540 84 0.939 16 2.360 58 0.184 57 0.526 33 2.086 99 0.109 22 0.400 05
2.50 3.219 83 0.600 35 0.999 72 2.496 43 0.234 42 0.596 51 2.155 85 0.125 35 0.426 28
2.40 3.340 78 0.653 74 1.049 98 2.618 18 0.280 94 0.653 34 2.220 47 0.140 74 0.446 51
2.30 3.448 13 0.700 82 1.089 80 2.725 20 0.323 44 0.697 60 2.308 01 0.169 10 0.483 02
2.20 3.538 99 0.740 92 1.118 25 2.815 01 0.361 15 0.729 09 2.392 98 0.200 79 0.516 96
2.10 3.608 14 0.772 63 1.133 40 2.883 05 0.392 93 0.746 72 2.458 69 0.228 77 0.537 59
2.00 3.646 87 0.793 47 1.131 89 2.922 06 0.417 10 0.748 43 2.499 45 0.251 61 0.543 64

m = 2). Two facts indicate this, such as the weak stability of the SR-disorder FP revealed for
2.96< a < 4 and thata(2)c = 3 formc = 2.0114. In the higher orders of approximation the
marginal value ofmc can be found with the use of the Harris criterion [2]dν0(mc) − 2 = 0,
and asν0 = 0.669 [23] form = 2, thenmc < 2. Therefore, we believe that the corrected
picture of the regions of various types of critical behaviour of the model with LR-correlated
defects will be represented by figure 1(c).

It is obvious that form > 3 the borderline equation between regions of pure and LR-
disorder critical behaviour may be determined by the extended Harris criterionaν0(m)−2= 0.
The values of exponentν and another static exponents for the pure 3D O(n)-symmetric model
withm > 3 were obtained in the six-loop order by Antonenko and Sokolov in [21]. Therefore,
marginal values ofac for eachm > 3 may be derived from these valuesν0 [21], soac ' 2.71
for m = 4, ac ' 2.61 form = 5, ac ' 2.53 form = 6 etc. Thus, asm→ ∞, ν0 → 1 then
ac → 2.

The case witha = 2 corresponds to a system of straight lines of impurities or straight
dislocation lines of random orientation in a sample. The critical behaviour of the 3D model with
lines of impurities ofs � 1 uniformly distributed orientations was considered by Dorogovtsev
in [23] in the one-loop order of approximation. This model is assumed to have similar critical
properties to the WH model witha = 2. Dorogovtsev showed that the SR-disorder FP is
stable for the number of order-parameter componentsm < 8

5, and the LR-disorder FP is
stable form > 8

5. Our description of the WH model in the two-loop approximation corrects
Dorogovtsev’s results and shows a low accuracy of the one-loop order considerations. The
inaccuracy of Dorogovtsev’s predictions can also be undersood with the use of the extended
Harris criterionaνSR(mc) − 2 = 0 to determine the borderline equation between regions of
SR- and LR-disorder behaviour. Fora = 2 and marginal valuemc, νSR must be equal to one.
But from table 5 we can see thatνSR(m = 1) = 0.6715 andνSR(m = 2) = 0.6642 in the
two-loop approximation and thereforeνSR 6= 1 for 16 m 6 2.
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Table 5. Critical exponents of the 3D WH model from two-loop expansions.

m = 1 m = 2 m = 3

a 2/a η ν z η ν z η ν z

3.01 0.032 7 0.671 5 2.171 2 0.028 8 0.664 2 2.000 0 0.028 3 0.696 0 2.021 7
3.00 0.666 7 0.032 7 0.671 5 2.171 2 0.028 8 0.664 2 2.000 0 0.028 3 0.696 0 2.021 7
2.90 0.689 7 0.030 4 0.681 3 2.212 0 0.024 8 0.714 1 2.131 5 0.028 3 0.696 0 2.021 7
2.80 0.714 3 0.027 0 0.688 9 2.248 6 0.021 2 0.719 0 2.151 0 0.017 9 0.760 0 2.112 8
2.70 0.740 7 0.022 7 0.695 0 2.283 7 0.016 6 0.724 0 2.173 6 0.013 7 0.763 2 2.126 9
2.60 0.769 2 0.017 6 0.700 2 2.318 4 0.011 2 0.769 2 2.198 8 0.008 4 0.768 2 2.144 3
2.50 0.800 0 0.011 8 0.704 6 2.353 2 0.003 5 0.737 8 2.233 8 0.002 5 0.772 7 2.163 3
2.40 0.833 3 0.005 5 0.708 3 2.387 9 −0.005 0 0.745 2 2.268 4 −0.004 0 0.776 3 2.182 7
2.30 0.869 6 −0.001 2 0.711 4 2.421 5 −0.013 8 0.751 3 2.301 3 −0.012 5 0.783 5 2.207 8
2.20 0.909 1 −0.008 1 0.713 7 2.452 4 −0.022 6 0.755 8 2.330 1 −0.021 8 0.790 5 2.231 5
2.10 0.952 4 −0.014 7 0.715 1 2.478 0 −0.030 7 0.758 8 2.352 2 −0.030 3 0.795 2 2.251 4
2.00 1.000 0 −0.020 5 0.715 5 2.494 9 −0.037 1 0.759 9 2.364 9 −0.037 0 0.797 5 2.264 4

5. Critical exponents and conclusions

Finally, we have calculated the static and dynamic critical exponents for the WH model
(table 5), received from the resummed by the generalized Padé–Borel methodγ functions in the
corresponding stable FPs:η = γφ(u∗, v∗, w∗), ν = [2 + γφ2(u∗, v∗, w∗)− γφ(u∗, v∗, w∗)]−1

andz = 2 +γλ(u∗, v∗, w∗).
The comparison of the exponentν values and ratio 2/a from table 5 shows the violation

supposed in [1] on the basis of some heuristic arguments as exactly the relationν = 2/a.
The revealed difference is caused by the use in our work of a more accurate field-theoretic
description in the higher orders of approximation for the 3D system directly together with
methods of series summation. Also, these distinctions can be explained by the application
for calculations of the concrete numerical values of parametera and taking into consideration
the graphs of the form shown in figure 5, discarded when theε, δ-expansion is used, but
contributions of which are increased when the valuesa are removed froma = 3. Of course,
there are errors in the present consideration determined by the accuracy of series summation
for theβ andγ functions. However, comparison of the exponent values for the SR-disorder
Ising model, calculated with the use Padé–Borel method in [5,6] in the two-loop and four-loop
approximations respectively, shows that their differences are not more than 0.02. For the pure
Ising model, comparison of the two-loop order results [5] with the high-order results [24]
shows that differences of the exponent values are still smaller. At the same time, in our work
ν–2/a depends on the values ofa andm and has the value 0.284, for example, fora = 2 and
m = 1, which is considerably larger.

In [23, 25] Dorogovtsev calculated the static and dynamic critical exponents for a 3D
model with a system of straight lines of impurities ofs � 1 uniformly distributed orientations
in the one-loop approximation. He found the exponentz ' 2.41 form = 2 andz ' 2.28 for
m = 3, and the exponentν ' 0.75, which is independent ofm in the one-loop approximation.
These values are comparable with the values of the same exponents in table 5 for the case
a = 2. It should be emphasized that the value of exponentν, obtained by Dorogovtsev, also
demonstrates the violation of relationν = 2/a.

We also estimated the values of exponentsη andz, derived for the WH model in [11]
with the use of doubleε, δ-expansion, by direct substitution ofε = 1 andδ = 2 (a = 2).
So,η ' −0.071 andz ' 2.737 form = 2, η ' −0.047 andz ' 2.494 form = 3. The
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resummation by the Padé–Borel method of second-orderε, δ-expansion series forz gave the
valuesz ' 2.566 form = 2 andz ' 2.525 form = 2. The comparison of these values
with values of the same exponents from table 5 shows that results obtained by field-theoretic
description of the 3D WH model for the concrete numerical values of parametera essentially
differ from results evaluated byε, δ-expansion.

In closing, we hope that the features of the critical behaviour of the WH model revealed in
our paper will stimulate the organization of experimental works in real disordered systems with
LR-correlated defects such as magnetic materials with line defects and solids with fractal-like
defects. Also, computational methods can be applied to simulate disordered systems with
straight lines of impurities of random orientation in a sample(a = 2). The received values
of exponents can be used for an explanation of the results of a computer simulation of the
3D disordered Ising model [26] at impurity concentrations between the threshold of impurity
percolation and the spin-percolation threshold, in which the fractal-like behaviour of impurity-
extended structures and the competition between impurity-percolating and spin-percolating
clusters are possible.
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